RocksDB is a persistent key-value store for fast storage environment. Here are some highlight features from RocksDB:

  1. RocksDB uses a log structured database engine, written entirely in C++, for maximum performance. Keys and values are just arbitrarily-sized byte streams.
  2. RocksDB is optimized for fast, low latency storage such as flash drives and high-speed disk drives. RocksDB exploits the full potential of high read/write rates offered by flash or RAM.
  3. RocksDB is adaptable to different workloads. From database storage engines such as MyRocks to application data caching to embedded workloads, RocksDB can be used for a variety of data needs.
  4. RocksDB provides basic operations such as opening and closing a database, reading and writing to more advanced operations such as merging and compaction filters.

TiKV uses RocksDB because RocksDB is mature and high-performance. In this section, we will explore how TiKV uses RocksDB. We won’t talk about basic features like Get, Put, Delete, and Iterate here because their usage is simple and clear and works well too. Instead, we’ll focus some special features used in TiKV below.

Prefix Bloom Filter

A Bloom Filter is a magical data structure that uses a little resource but helps a lot. We won’t explain the whole algorithm here. If you are not familiar with Bloom Filters, you can think it as a black box inside a dataset, which can tell you if a key probably exists or definitely does not without actually searching the dataset. Sometimes Bloom Filter gives you a false-positive answer although it rarely happens.

TiKV uses a Bloom Filter as well as a variant which is called Prefix Bloom Filter (PBF). Instead of telling you if a whole key exists in a dataset or not, PBF tells you if there are some other keys with the same prefix exists. Since PBF only stores the unique prefixes instead of all unique whole keys, it can save some memory too with the down side of having larger false positive rate.

TiKV supports MVCC, which means that there can be multiple versions for the same row stored in RocksDB. All versions of the same row share the same prefix (the row key) but have different timestamps as a suffix. When we want to read a row, we usually don’t know about the exact version to read, but only want to read the latest version at a specific timestamp. This is where PBF shines. PBF can filter out data which is impossible to contain keys with the same prefix as the row key we provided. Then we just need to search in the data that may contain different versions of the row key and locate the specific version we want.


RocksDB allows us to register some table properties collectors. When RocksDB builds an SST file, it passes the sorted key-values one by one to the callback of each collector so that we can collect whatever we want. Then when the SST file is finished, the collected properties will be stored inside the SST file too.

We use this feature to optimize two functionalities.

The first one is for Split Check. Split check is a worker to check if regions are large enough to split. We have to scan all the data within a region to calculate the size of the region at the original implementation, which is resource consuming. With the TableProperties feature, we record the size of small sub-ranges in each SST file so that we can calculate the approximate size of a region from the table properties without scanning any data at all.

Another one is for MVCC Garbage Collection (GC). GC is a process to clean up garbage versions (versions older than the configured lifetime) of each row. If we have no idea whether a region contains some garbage versions or not, we have to check all regions periodically. To skip unnecessary garbage collection, we record some MVCC statistics (e.g. the number of rows and the number of versions) in each SST file. So before checking every region row by row, we check the table properties to see if it is necessary to do garbage collection on a region.


From time to time, some regions may contain a lot of tombstone entries because of GC or other delete operations. Tombstone entries are not good for scan performance and waste disk space as well.

So with the TableProperties feature, we can check every region periodically to see if it contains a lot of tombstones. If it does, we will compact the region range manually to drop tombstone entries and release disk space.

We also use CompactRange to recover RocksDB from some mistakes like incompatible table properties across different TiKV versions.


EventListener allows us to listen to some special events, like flush, compaction or write stall condition change. When a specific event is triggered or finished, RocksDB will invoke our callbacks with some information about the event.

TiKV listens to the compaction event to observe the region size changes. As mentioned above, we calculate the approximate size of each region from the table properties. The approximate size will be recorded in the memory so that we don’t need to calculate it again and again if nothing has changed. However, during compactions, some entries are dropped so the approximate size of some regions should be updated. That’s why we listen to the compaction events and recalculate the approximate size of some regions when necessary.


RocksDB allows us to generate an SST file outside and then ingest the file into RocksDB directly. This feature can potentially save a lot of IO because RocksDB is smart enough to ingest a file to the bottom level if possible, which can reduce write amplification because the ingested file doesn’t need to be compacted again and again.

We use this feature to handle Raft snapshot. For example, when we want to add a replica to a new server. We can first generate a snapshot file from another server and then send the file to the new server. Then the new server can ingest that file into its RocksDB directly, which saves lots of work!

We also use this feature to import a huge amount of data into TiKV. We have some tools to generate sorted SST files from different data sources and then ingest those files into different TiKV servers. This is super fast compared to writing key-values to a TiKV cluster in the usual way.


Previously, TiKV used the straightforward way to delete a range of data, which is scanning all the keys in the range and then delete them one by one. However, disk space would not release until the tombstones have been compacted. Even worse, disk space usage will actually increase temporarily because of newly written tombstones.

As time goes on, users store more and more data in TiKV until their disk space is insufficient. Then users will try to drop some tables or add more stores and expect the disk space usage to decrease in a short time. But TiKV didn’t meet expectations with this method. We first tried to solve this by using the DeleteRange feature in RocksDB. However, DeleteRange turns out to be unstable and can not release disk space fast enough.

A faster way to release disk space is to delete some files directly, which leads us to the DeleteFilesInRange feature. But this feature is not perfect, it is quite dangerous because it breaks the snapshot consistency. If you acquire a snapshot from RocksDB, use DeleteFilesInRange to delete some files, then try to read that data you will find that some of it is missing. So we should use this feature carefully.

TiKV uses DeleteFilesInRange to destroy tombstone regions and GC dropped tables. Both cases have a prerequisite that the dropped range must not be accessed anymore.